Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Agric Food Chem ; 72(18): 10537-10547, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38685906

RESUMEN

Bitter compounds are common in nature and among drugs. Previously, machine learning tools were developed to predict bitterness from the chemical structure. However, known structures are estimated to represent only 5-10% of the metabolome, and the rest remain unassigned or "dark". We present BitterMasS, a Random Forest classifier that was trained on 5414 experimental mass spectra of bitter and nonbitter compounds, achieving precision = 0.83 and recall = 0.90 for an internal test set. Next, the model was tested against spectra newly extracted from the literature 106 bitter and nonbitter compounds and for additional spectra measured for 26 compounds. For these external test cases, BitterMasS exhibited 67% precision and 93% recall for the first and 58% accuracy and 99% recall for the second. The spectrum-bitterness prediction strategy was more effective than the spectrum-structure-bitterness prediction strategy and covered more compounds. These encouraging results suggest that BitterMasS can be used to predict bitter compounds in the metabolome without the need for structural assignment of individual molecules. This may enable identification of bitter compounds from metabolomics analyses, for comparing potential bitterness levels obtained by different treatments of samples and for monitoring bitterness changes overtime.


Asunto(s)
Espectrometría de Masas , Gusto , Metabolómica , Humanos , Aprendizaje Automático , Metaboloma
2.
Artículo en Inglés | MEDLINE | ID: mdl-38630275

RESUMEN

PURPOSE: gustatory ability is a marker of health not routinely tested in the medical practice. The current study wants to assess whether taste strips can be useful to monitor taste function from home. METHODS: we performed simple sensory tests in lab setting vs. unassisted testing at home, and compared the results with self-reports ability to taste and smell. Using paper strips impregnated with sweet, bitter, salty, or sour tastants, and with two trigeminal stimuli (capsaicin, tannins) in high and low concentrations, we assessed gustatory and trigeminal function in 74 participants (47 women) in the lab, where paper strips were administered by an experimenter, and in 77 participants (59 women) at home, where they self-administered the test. RESULTS: we found that high (but not low) concentration taste strips are correctly identified by vast majority of participants. On average, taste identification, intensity and pleasantness scores did not differ for the 8 taste strips, while identification of capsaicin was significantly better in the lab. Taste identification scores correlated with intensity ratings in both settings (r = 0.56, in the lab, r = 0.48, at home, p < 0.005). Self-rated taste ability correlated with self-rated smell ability (r = 0.68, and r = 0.39, p ≤ 0.005), but not with scores in the strips test. CONCLUSION: home testing with impregnated taste strips is feasible, and can be used for telemedical purposes.

3.
Br J Pharmacol ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38339984

RESUMEN

A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.

4.
Biochem Pharmacol ; 219: 115932, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989413

RESUMEN

Bitter taste receptors (T2R) are a subfamily of G protein-coupled receptors that enable humans to detect aversive and toxic substances. The ability to discern bitter compounds varies between individuals and is attributed mainly to naturally occurring T2R polymorphisms. T2Rs are also expressed in numerous non-gustatory tissues, including the heart, indicating potential contributions to cardiovascular physiology. In this study. T2Rs that have previously been identified in human cardiac tissues (T2Rs - 10, 14, 30, 31, 46 and 50) and their naturally occurring polymorphisms were functionally characterised. The ligand-dependent signaling responses of some T2R variants were completely abolished (T2R30 Leu252 and T2R46 Met228), whereas other receptor variants had moderate changes in their maximal response, but not potency, relative to wild type. Using a cAMP fluorescent biosensor, we reveal the productive coupling of T2R14, but not the T2R14 Phe201 variant, to endogenous Gαi. Modeling revealed that these variants resulted in altered interactions that generally affected ligand binding (T2R30 Leu252) or Gα protein interactions (T2R46 Met228 and T2R14 Phe201), rather than receptor structural stability. Interestingly, this study is the first to show a difference in signaling for T2R50 Tyr203 (rs1376251) which has been associated with cardiovascular disease. The observation of naturally occurring functional variation in the T2Rs with the greatest expression in the heart is important, as their discovery should prove useful in deciphering the role of T2Rs within the cardiovascular system.


Asunto(s)
Receptores Acoplados a Proteínas G , Gusto , Humanos , Gusto/fisiología , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
5.
Commun Med (Lond) ; 3(1): 104, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500763

RESUMEN

BACKGROUND: There is a prevailing view that humans' capacity to use language to characterize sensations like odors or tastes is poor, providing an unreliable source of information. METHODS: Here, we developed a machine learning method based on Natural Language Processing (NLP) using Large Language Models (LLM) to predict COVID-19 diagnosis solely based on text descriptions of acute changes in chemosensation, i.e., smell, taste and chemesthesis, caused by the disease. The dataset of more than 1500 subjects was obtained from survey responses early in the COVID-19 pandemic, in Spring 2020. RESULTS: When predicting COVID-19 diagnosis, our NLP model performs comparably (AUC ROC ~ 0.65) to models based on self-reported changes in function collected via quantitative rating scales. Further, our NLP model could attribute importance of words when performing the prediction; sentiment and descriptive words such as "smell", "taste", "sense", had strong contributions to the predictions. In addition, adjectives describing specific tastes or smells such as "salty", "sweet", "spicy", and "sour" also contributed considerably to predictions. CONCLUSIONS: Our results show that the description of perceptual symptoms caused by a viral infection can be used to fine-tune an LLM model to correctly predict and interpret the diagnostic status of a subject. In the future, similar models may have utility for patient verbatims from online health portals or electronic health records.


Early in the COVID-19 pandemic, people who were infected with SARS-CoV-2 reported changes in smell and taste. To better study these symptoms of SARS-CoV-2 infections and potentially use them to identify infected patients, a survey was undertaken in various countries asking people about their COVID-19 symptoms. One part of the questionnaire asked people to describe the changes in smell and taste they were experiencing. We developed a computational program that could use these responses to correctly distinguish people that had tested positive for SARS-CoV-2 infection from people without SARS-CoV-2 infection. This approach could allow rapid identification of people infected with SARS-CoV-2 from descriptions of their sensory symptoms and be adapted to identify people infected with other viruses in the future.

6.
J Agric Food Chem ; 71(23): 9051-9061, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37263600

RESUMEN

Flavor is perceived through the olfactory, taste, and trigeminal systems, mediated by designated GPCRs and channels. Signal integration occurs mainly in the brain, but some cross-reactivities occur at the receptor level. Here, we predict potential bitterness and taste receptors targets for thousands of odorants. BitterPredict and BitterIntense classifiers suggest that 3-9% of flavor and food odorants have bitter taste, but almost none are intensely bitter. About 14% of bitter molecules are expected to have an odor. Bitterness is more common for unpleasant smells such as fishy, amine, and ammoniacal, while non-bitter odorants often have pleasant smells. Experimental toxicity values suggest that fishy ammoniac smells are more toxic than pleasant smells, regardless of bitterness. TAS2R14 is predicted as the main bitter receptor for odorants, confirmed by in vitro profiling of 10 odorants. The activity of bitter odorants may have implications for physiology due to ectopic expression of taste and smell receptors.


Asunto(s)
Neuronas Receptoras Olfatorias , Gusto , Humanos , Gusto/fisiología , Odorantes/análisis , Percepción del Gusto/fisiología , Olfato , Neuronas Receptoras Olfatorias/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Cell Mol Life Sci ; 80(4): 114, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012410

RESUMEN

The human GPCR family comprises circa 800 members, activated by hundreds of thousands of compounds. Bitter taste receptors, TAS2Rs, constitute a large and distinct subfamily, expressed orally and extra-orally and involved in physiological and pathological conditions. TAS2R14 is the most promiscuous member, with over 150 agonists and 3 antagonists known prior to this study. Due to the scarcity of inhibitors and to the importance of chemical probes for exploring TAS2R14 functions, we aimed to discover new ligands for this receptor, with emphasis on antagonists. To cope with the lack of experimental structure of the receptor, we used a mixed experimental/computational methodology which iteratively improved the performance of the predicted structure. The increasing number of active compounds, obtained here through experimental screening of FDA-approved drug library, and through chemically synthesized flufenamic acid derivatives, enabled the refinement of the binding pocket, which in turn improved the structure-based virtual screening reliability. This mixed approach led to the identification of 10 new antagonists and 200 new agonists of TAS2R14, illustrating the untapped potential of rigorous medicinal chemistry for TAS2Rs. 9% of the ~ 1800 pharmaceutical drugs here tested activate TAS2R14, nine of them at sub-micromolar concentrations. The iterative framework suggested residues involved in the activation process, is suitable for expanding bitter and bitter-masking chemical space, and is applicable to other promiscuous GPCRs lacking experimental structures.


Asunto(s)
Receptores Acoplados a Proteínas G , Gusto , Humanos , Gusto/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Reproducibilidad de los Resultados , Unión Proteica
8.
J Med Chem ; 66(5): 3499-3521, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36847646

RESUMEN

The bitter taste receptor TAS2R14 is a G protein-coupled receptor that is found on the tongue as well as in the human airway smooth muscle and other extraoral tissues. Because its activation causes bronchodilatation, TAS2R14 is a potential target for the treatment of asthma or chronic obstructive pulmonary disease. Structural variations of flufenamic acid, a nonsteroidal anti-inflammatory drug, led us to 2-aminopyridines showing considerable efficacy and potency in an IP1accumulation assay. In combination with an exchange of the carboxylic moiety by a tetrazole unit, a set of promising new TAS2R14 agonists was developed. The most potent ligand 28.1 (EC50 = 72 nM) revealed a six-fold higher potency than flufenamic acid and a maximum efficacy of 129%. Besides its unprecedented TAS2R14 activation, 28.1 revealed marked selectivity over a panel of 24 non-bitter taste human G protein-coupled receptors.


Asunto(s)
Ácido Flufenámico , Gusto , Humanos , Receptores Acoplados a Proteínas G/agonistas , Músculo Liso
9.
Chem Senses ; 482023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36806908

RESUMEN

We have previously shown that l-glucose, the non-caloric enantiomer of d-glucose, activates the human sweet taste receptor T1R2/T1R3 transiently expressed in HEK293T cells. Here, we show that d- and l-glucose can also activate T1R2 and T1R3 expressed without the counterpart monomer. Serine mutation to alanine in residue 147 in the binding site of T1R3 VFT domain, completely abolishes T1R3S147A activation by either l- or d-glucose, while T1R2/T1R3S147A responds in the same way as T1R2 expressed without its counterpart. We further show that the original T1R2 reference sequence (NM_152232.1) is less sensitive by almost an order of magnitude than the reference sequence at the time this study was performed (NM_152232.4). We find that out of the four differing positions, it is the R317G in the VFT domain of T1R2, that is responsible for this effect in vitro. It is significant for both practical assay sensitivity and because glycine is found in this position in ~20% of the world population. While the effects of the mutations and the partial transfections were similar for d and l enantiomers, their dose-response curves remained distinct, with l-glucose reaching an early plateau.


Asunto(s)
Glucosa , Gusto , Humanos , Glucosa/farmacología , Glucosa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Sitios de Unión
10.
Int J Oncol ; 62(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382671

RESUMEN

Bitter taste receptors (T2Rs) are G protein­coupled receptors originally detected in the gustatory system. More recently, T2Rs have been shown to be expressed in extra­oral cells eliciting non­gustatory functions. Emerging evidence has suggested a potential role for T2R signaling in diverse pathophysiological conditions, including cancer. -The aim of the present study was to evaluate the expression of T2R14 in pancreatic ductal adenocarcinoma (PDAC) and to assess its involvement in the anticancer effects induced by apigenin, a natural ligand of T2R14. For this purpose, T2R14 expression was explored in PDAC tumor tissue and tumor­derived cell lines. Using the cell lines expressing the highest levels of T2R14, its effects on chemoresponsiveness and migration upon activation with apigenin were investigated in vitro. To the best of our knowledge, the present study was the first to confirm the expression of the T2R family member T2R14 in PDAC. Patients with relatively high levels of T2R14 expression exhibited significantly prolonged overall survival compared with that of patients with low T2R14 expression. Furthermore, novel functions for apigenin were revealed; notably, apigenin was shown to elicit cytotoxic, anti­migratory and chemosensitizing effects to 5­fluoruracil (5­FU) and to 5­FU, leucovorin, irinotecan and oxaliplatin in pancreatic cancer cells. In conclusion, the present study extended the evidence for the anticancer effects of apigenin and strongly indicated the functional relevance of T2R14 in PDAC, even though their respective underlying pathways appear to be independent of each other.


Asunto(s)
Apigenina , Gusto , Humanos , Gusto/fisiología , Apigenina/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Fluorouracilo
11.
Prog Mol Biol Transl Sci ; 193(1): 177-193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36357077

RESUMEN

Taste GPCRs are expressed in taste buds on the tongue and play a key role in food choice and consumption. They are also expressed extra-orally, with various physiological roles that are currently under study. Unraveling the roles of these receptors relies on the knowledge of their ligands. Combining sensory, cell-based and computational approaches enabled the discovery of numerous agonists and several antagonists. Here we provide a short overview of taste receptor families, main recent methods for ligands discovery, and current sources of information about known ligands. The future directions that are likely to impact the taste GPCR field include focus on ligand interactions with naturally occurring polymorphisms, as well as harnessing the power of CryoEM and of multiple signaling readout techniques.


Asunto(s)
Receptores Acoplados a Proteínas G , Gusto , Humanos , Ligandos , Transducción de Señal
12.
Foods ; 11(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35804694

RESUMEN

Sweet taste is innately appealing, ensuring that mammals are attracted to the sweetness of mother's milk and other sources of carbohydrates and calories. In the modern world, the availability of sugars and sweeteners and the eagerness of the food industry to maximize palatability, result in an abundance of sweet food products, which poses a major health challenge. The aim of the current study is to analyze sweetness levels, liking, and ingredients of online reviews of food products, in order to obtain insights into sensory nutrition and to identify new opportunities for reconciling the palatability-healthiness tension. We collected over 200,000 reviews of ~30,000 products on Amazon dated from 2002 to 2012 and ~350,000 reviews of ~2400 products on iHerb from 2006 to 2021. The reviews were classified and analyzed using manual curation, natural language processing, and machine learning. In total, ~32,000 (Amazon) and ~29,000 (iHerb) of these reviews mention sweetness, with 2200 and 4600 reviews referring to the purchased products as oversweet. Oversweet reviews were dispersed among consumers. Products that included sucralose had more oversweet reviews than average. 26 products had at least 50 reviews for which at least 10% were oversweet. For these products, the average liking by consumers reporting oversweetness was significantly lower (by 0.9 stars on average on a 1 to 5 stars scale) than by the rest of the consumers. In summary, oversweetness appears in 7-16% of the sweetness-related reviews and is less liked, which suggests an opportunity for customized products with reduced sweetness. These products will be simultaneously healthier and tastier for a substantial subgroup of customers and will benefit the manufacturer by expanding the products' target audience. Analysis of consumers' reviews of marketed food products offers new ways to obtain informative sensory data.

13.
J Cheminform ; 14(1): 45, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799226

RESUMEN

Bitterness is an aversive cue elicited by thousands of chemically diverse compounds. Bitter taste may prevent consumption of foods and jeopardize drug compliance. The G protein-coupled receptors for bitter taste, TAS2Rs, have species-dependent number of subtypes and varying expression levels in extraoral tissues. Molecular recognition by TAS2R subtypes is physiologically important, and presents a challenging case study for ligand-receptor matchmaking. Inspired by hybrid recommendation systems, we developed a new set of similarity features, and created the BitterMatch algorithm that predicts associations of ligands to receptors with ~ 80% precision at ~ 50% recall. Associations for several compounds were tested in-vitro, resulting in 80% precision and 42% recall. The encouraging performance was achieved by including receptor properties and integrating experimentally determined ligand-receptor associations with chemical ligand-to-ligand similarities.BitterMatch can predict off-targets for bitter drugs, identify novel ligands and guide flavor design. The novel features capture information regarding the molecules and their receptors, which could inform various chemoinformatic tasks. Inclusion of neighbor-informed similarities improves as experimental data mounts, and provides a generalizable framework for molecule-biotarget matching.

14.
Food Chem ; 373(Pt A): 131393, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34715629

RESUMEN

Naturally occurring sugars usually have d-chirality. While a change in chirality typically affects ligand-receptor interaction, non-caloric l-glucose was reported as sweet for humans. Here we show that l- and d-glucose have similar sensory detection thresholds (0.041 ± 0.006 M for d-glucose, and 0.032 ± 0.007 M for l-glucose) and similar sweetness intensities at suprathreshold concentrations. We demonstrate that l-glucose acts via the sweet taste receptor TAS1R2/TAS1R3, eliciting a dose-dependent activation in cell-based functional assays. Computational docking of glucose to the VFT domain of TAS1R2 suggests two sub-pockets, each compatible with each of the enantiomers. While some polar residues (Y103, D142, N143, S144, Y215) are unique for sub-pocket A and others (D307, T326, E382, R383) for sub-pocket B, no interaction is unique for only one enantiomer. The many options for creating hydrogen bonds with the hydroxyl moieties of glucose explain how both enantiomers can fit each one of the sub-pockets.


Asunto(s)
Glucosa , Gusto , Humanos , Enlace de Hidrógeno , Receptores Acoplados a Proteínas G/genética , Azúcares
15.
Int Forum Allergy Rhinol ; 12(2): 210-216, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34704387

RESUMEN

Subjectively perceived impairment of taste is a common and distinct symptom of coronavirus disease 2019 (COVID-19). Large meta-analyses identified this symptom in approximately 50% of cases. However, this high prevalence is not supported by blinded and validated psychophysical gustatory testing, which showed a much lower prevalence in up to 26% of patients. This discrepancy may be due to misinterpretation of impaired retronasal olfaction as gustatory dysfunction. In addition, we hypothesized that COVID-19-associated hyposmia is involved in the decrease of gustatory function, as found for hyposmia of different origin. This indirect mechanism would be based on the central-nervous mutual amplification between the chemical senses, which fails in COVID-19-associated olfactory loss. However, further research is necessary on how severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) may directly impair the gustatory pathway as well as its subjective perception.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Trastornos del Olfato/epidemiología , Pandemias , SARS-CoV-2 , Olfato , Gusto
16.
Life (Basel) ; 13(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36676008

RESUMEN

Taste dysfunctions may occur, for example, after viral infection, surgery, medications, or with age. In clinical practice, it is important to assess patients' taste function with rapidity and reliability. This study aimed to develop a test that assesses human gustatory sensitivity together with somatosensory functions of astringency and spiciness. A total of 154 healthy subjects and 51 patients with chemosensory dysfunction rated their gustatory sensitivity. They underwent a whole-mouth identification test of 12 filter-paper strips impregnated with low and high concentrations of sweet, sour, salty, bitter (sucrose, citric acid, NaCl, quinine), astringency (tannin), and spiciness (capsaicin). The percentage of correct identifications for high-concentrated sweet and sour, and for low-concentrated salty, bitter and spicy was lower in patients as compared with healthy participants. Interestingly, a lower identification in patients for both astringent concentrations was found. Based on the results, we proposed the Seven-iTT to assess chemo/somatosensory function, with a cut-off of 6 out of 7. The test score discriminated patients from healthy controls and showed gender differences among healthy controls. This quantitative test seems to be suitable for routine clinical assessment of gustatory and trigeminal function. It also provides new evidence on the mutual interaction between the two sensory systems.

19.
J Clin Invest ; 131(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34651586

RESUMEN

Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote "off-the-shelf" precision immunotherapies, alleviating limitations of personalized treatments.


Asunto(s)
Antígenos de Neoplasias/inmunología , Melanoma/inmunología , Proteínas ras/inmunología , Línea Celular Tumoral , Antígenos HLA-A/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas ras/genética
20.
Food Chem ; 364: 130420, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34182369

RESUMEN

Licorice saponins, the main constituents of Glycyrrhiza glabra L. roots, are highly appreciated by the consumer for their pleasant sweet and long lasting licorice taste. The objective of the present study was to understand the molecular features that contribute to bitter, sweet and licorice sensation of licorice roots, and whether individual compounds elicit more than one of these sensations. Therefore, a sensomics approach was conducted, followed by purification of the compounds with highest sensory impact, and by synthesis as well as full characterization via HRESIMS, ESIMS/MS and 1D/2D-NMR experiments. This led to the discovery and structure determination of 28 sweet, bitter and licorice tasting key phytochemicals, including two unknown compounds. A combination of sensorial, cell-based and computational analysis revealed distinct structural features, such as spatial arrangement of functional groups in the triterpenoid E-ring, driving to different taste sensations and sweet receptor hTAS1R2/R3 stimulation.


Asunto(s)
Glycyrrhiza , Saponinas , Triterpenos , Fitoquímicos , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...